# The MapInfo Interchange File (MIF) Format Specification 

MapInfo Corporation Troy, NY

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without the written permission of MapInfo Corporation, One Global View, Troy, New York 12180-8399.
${ }^{〔}$ 1992-1999 MapInfo Corporation. All rights reserved. MapInfo Help ${ }^{\circ} 1992-1999$ MapInfo Corporation. All rights reserved. MapInfo, MapInfo Professional, and the MapInfo "Rainbow" Logo are registered trademarks of MapInfo Corporation in the United States Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark owner, with no intent to infringe on the trademark. MapInfo welcomes your comments and suggestions.

## MapInfo Corporate Headquarters:

Voice: (518) 285-6000
Fax: (518) 285-6060
Sales Info Hotline: (800) 327-8627
Federal Sales: (800) 619-2333
Technical Support Hotline: (518) 285-7283
Technical Support Fax: (518) 285-6080

## MapInfo Europe Headquarters:

## England

voice: +44 (0)1753848 200
fax: +44 (0)1753 621140

Germany
voice: +49 619667000
fax: +49 6196670011

Toll-free telephone support is available in the U.S. and Canada. Contact your MapInfo sales representative for details. For international customers, please use the Technical Support Fax number.

## Introduction

This specification provides information about the MapInfo Interchange File (MIF) format. MIF is an ASCII text file format that fully describes the contents of a MapInfo table. MIF consists of two related files: one for the graphical data, and one for the tabular data. The graphical data is in a file with a .mif extension, and the tabular data is in a file with a .mid extension. MIF files can be read and written by MapInfo Professional and translated into other formats with other programs. In this guide, you will find information on:
Chapter 1: MapInfo Data Interchange Format

- MIF File Header
- MIF Data Section
- Pen Styles
- Brush Styles
- Symbol Styles
- Font Styles
- Colors
- MID File

Chapter 2: Creating Your Own Coordinate System

- Projections and Coordinate Systems
- Elements of a Coordinate System
- Editing the MAPINFOW.PRJ File
- Affine Transformations
- Frequently Asked Questions on Projections
- More Information on Projections


## Chapter 1: MapInfo Data Interchange Format

This chapter describes the data interchange format for MapInfo. In this chapter, you will find information on:

- MIF File Header
- MIF Data Section
- Pen Styles
- Brush Styles
- Symbol Styles
- Font Styles
- Colors
- MID File

This versatile format allows generic data to be attached to a variety of graphical items. Since it is ASCII, it is editable, relatively easy to generate, and works on all platforms supported by MapInfo. Perhaps the best way to understand the MapInfo Interchange Format (MIF) is to study the sample file at the end of this chapter in conjunction with the explanation of the file format. You can also create samples of your own by exporting files to MIF and then examining those files in a text editor.

MapInfo data is in two files - the graphics reside in a .MIF file and textual data is contained in a .MID file. The textual data is delimited data, with one row per record and either Carriage Return, Carriage Return plus Line Feed, or Line Feed between lines. The MIF file has two areas - the file header area and the data section. Information on how to create MapInfo tables is in the header; the graphical object definitions are in the data section.

## MIF File Header

This is a description of MIF file header with optional information in square brackets.

```
VERSION n
Charset "characterSetName"
[ DELIMITER "<c>" ]
[ UNIQUE n,n.. ]
[ INDEX n,n.. ]
[ COORDSYS...]
[ TRANSFORM...]
COLUMNS n
    <name> <type>
    <name> <type>
    .
DATA
```


## Version

The Version clause states whether you are using VERSION 1, VERSION 2, VERSION 300 or VERSION 450 of the format. Version 300, introduced with MapInfo 3.0, allows multiplesection polyline objects. VERSION 450 introduced the expanded node limit: the maximum number of nodes for regions and polylines is 1,048,572 nodes for a single polygon region or polyline. The limit drops by seven nodes for every two additional polygons.If an object with more than 32 K nodes is saved and the table is read in a version of MapInfo prior to version 4.5, the object(s) will not be visible. Objects in the table that do not exceed the 32 K limit will be visible. VERSION 450 also includes point sized pen width.

## Charset

The Charset clause specifies which character set was used to create text in the table. For example: Specify "WindowsLatin1" to indicate that the file was created using the Windows US \& Western Europe character set; specify "MacRoman" to specify the Macintosh US \& Western Europe character set; or specify "Neutral" to avoid converting the text into another character set. If you are not using one of these character sets, you can determine the correct syntax for your character set by exporting a table and examining the .MIF file in a text editor.

## Delimiter

Specify the delimiting character in quotation marks, for example:
DELIMITER ";"
The default delimiter is Tab; if you are using the default, you do not need the DELIMITER line.

## Unique

Specify a number. This number refers to a database column; 3 is the third column, 7 is the seventh column, and so forth. What happens to columns in the UNIQUE list is subtle. For example, imagine that you have a database with highways in it. Each highway has only one name, but it might be represented by several segments. You would put the NAME column in the UNIQUE list, while the column containing data for the individual segments would not be in that list. This has the effect of creating two related tables; one with names, and one with the other attributes of the objects. This is how MapInfo's various street maps (StreetInfo) are prepared.

## Index

To indicate that columns in the table are indexed, include a number (or a comma-separated list of numbers) in the Index clause. Each number refers to a database column; 3 is the third column, 7 is the seventh column, and so forth. Columns in the INDEX list will have indexes prepared for them.

## CoordSys Clause

Specify the COORDSYS clause to note that the data is not stored in longitude/latitude form.
When no COORDSYS clause is specified, data is assumed to be stored in longitude/latitude forms.

All coordinates are stored with respect to the northeast quadrant. The coordinates for points in the United States have a negative X while coordinates for points in Europe (east of Greenwich) have a positive X . Coordinates for points in the Northern hemisphere have a positive Y while coordinates for points in the Southern hemisphere have a negative $Y$.

## Syntax1

## CoordSys Earth

[ Projection type,
datum,
unitname
[, origin_longitude]
[, origin_latitude ]
[, standard_parallel_1 [, standard_parallel_2]]
[, azimuth ]
[, scale_factor ]
[, false_easting ]
[, false_northing]
[, range] ]
[ Affine Units unitname, $A, B C, D, E, F$ ]
[ Bounds ( minx, miny) ( maxx, maxy) ]

## Syntax2

CoordSys Nonearth
[ Affine Units unitname, $A, B C, D, E, F$ ]
Units unitname
Bounds ( minx, miny) ( maxx, maxy)

## Syntax3

CoordSys Layout Units paperunitname

## Syntax4

CoordSys Table tablename

## Syntax5

CoordSys Window window_id
type is a positive integer value representing which coordinate system to use datum is a positive integer value identifying which datum to reference unitname is a string representing a distance unit of measure (e.g. $\mathrm{m}^{\prime \prime}$ for meters); for a list of unit names, see Set Distance Units origin_longitude is a float longitude value, in degrees origin_latitude is a float latitude value, in degrees standard_parallel_1 and standard_parallel_2 are float latitude values, in degrees azimuth is a float angle measurement, in degrees scale_factor is a float scale factor range is a float value from 1 to 180, dictating how much of the Earth will be seen $\min x$ is a float specifying the minimum x value miny is a float specifying the minimum $y$ value $\operatorname{maxx}$ is a float specifying the maximum x value maxy is a float specifying the maximum $y$ value paperunitname is a string representing a paper unit of measure (e.g. in" for inches); for a list of unit names, see Set Paper Units
tablename is the name of an open table window_id is an Integer window identifier corresponding to a Map or Layout window A performs scaling or stretching along the X axis.
$B$ performs rotation or skewing along the $X$ axis.
C performs shifting along the X axis.
D performs scaling or stretching along the Y axis.
E performs rotation or skewing along the Y axis.
F performs shifting along the Y axis.

## Transform Clause

When you have MIF files with coordinates stored with respect to the northwest quadrant (quadrant 2), you can transform them to the northeast quadrant (quadrant 1) with a transform clause.

| Quadrant 2: | Quadrant 1: |
| :--- | ---: |
| Northwest Quadrant | Northeast Quadrant |
| Quadrant 3: | Quadrant 4: |
| Southwest Quadrant | Southeast Quadrant |

The transform clause has the following syntax:
TRANSFORM Xmultiplier, Ymultiplier, Xdisplacement,
Ydisplacement
To transform quadrant 2 data into quadrant 1 data, use the following transform clause:
TRANSFORM -1,0,0,0
The zeroes instruct MapInfo to ignore that parameter.
When you have an application which creates MIF files in quadrant 2, you can:

- Add the TRANSFORM clause to the MIF files
- Change the application so that it creates coordinates in quadrant 1
- Change the application so that it adds a TRANSFORM clause to the MIF files


## Columns

Specify the number of columns. Then, for each column, create a row containing the column name, the column type, and, for character and decimal columns, a number to indicate the width of the field. Valid column types are:

- char (width)
- integer (which is 4 bytes)
- smallint (which is 2 bytes, so it can only store numbers between -32767 and +32767 )
- decimal (width,decimals)
- float
- date
- logical

This is an example of the columns section of the header:

```
COLUMNS 3
STATE char (15)
POPULATION integer
AREA decimal (8,4)
```

For the database specified in this header, the MID file has three columns:
a 15 character field that represents the STATE column,
an integer field that represents the POPULATION column,
an AREA column that consists of a decimal field with up to 8 total characters (digits, decimals points, and optional sign) and 4 digits after the decimal.

## MIF Data Section

The data section of the MIF file follows the header and must be introduced with DATA on a single line:

## DATA

The data section of the MIF file can have any number of graphical primitives, one for each graphic object. MapInfo matches up entries in the MIF and MID files, associating the first object in the MIF file with the first row in the MID file, the second object in the MIF file with the second row in the MID file, and so on.
When there is no graphic object corresponding to a particular row in the MID file, a "blank" object (NONE) must be written as a place holder in the corresponding place in the MIF file.

## NONE

The graphical objects that can be specified are:

- point
- line
- polyline
- region
- arc
- text
- rectangle
- rounded rectangle
- ellipse

A point object takes two parameters; an $X$ coordinate and a $Y$ coordinate. As an option, specify the symbol that represents the point. Symbols are designated by numbers. If you omit the SYMBOL clause, the current symbol is used.

```
POINT x y
    [ SYMBOL (shape, color, size)]
```

MapInfo 4.0 also supports two variations on the SYMBOL clause; see Symbol discussion later in this chapter.

A line objects requires four parameters; an $X$ and a $Y$ coordinate for each end point. As an option, specify a pen type. When no pen type is specified, the current pen type is used.

```
LINE x1 y1 x2 y2
    [ PEN (width, pattern, color)]
```

A polyline object consists of one or more sections. If the polyline has more than one section, include the MULTIPLE keyword, followed by the number of sections. For each section, specify a numpts argument (which indicates the number of nodes in that section), followed by an $x / y$ coordinate pair for each node. Use the optional PEN clause (described later in this chapter) to specify the line style. If you include the optional SMOOTH keyword, the polyline is smoothed.

```
PLINE [ MULTIPLE numsections ]
    numpts1
    x1 y1
    x2 y2
[ numpts2
    x1 y1
    x2 y2 ]
        :
    [ PEN (width, pattern, color)]
    [ SMOOTH ]
```

A region object consists of one or more polygons. Specify the number of polygons through the numpolygons argument (immediately after the REGION keyword). For each polygon, specify a numpts argument (which indicates the number of nodes in that polygon), followed by an $x$ / y coordinate pair for each node. Use the optional PEN and BRUSH clauses (described later in this chapter) to specify the object's style. Use the optional CENTER clause to define the object's centroid explicitly. The centroid must be within the object.

```
REGION numpolygons
        numpts1
            x1 y1
            x2 y2
                :
[ numpts2
            x1 y1
            x2 y2 ]
        [ PEN (width, pattern, color)]
        [ BRUSH (pattern, forecolor, backcolor)]
        [ CENTER x y ]
```

An arc requires the diagonally opposite corners of its bounding rectangle and the beginning (a) and ending (b) angles of the arc in degrees, moving counter-clockwise with zero at three $o^{\prime}$ clock. As an option, specify the pen type. (An arc specifies a section of an ellipse, the corners of which are determined by the bounding rectangle.)

```
ARC x1 y1 x2 y2
    a b
    [ PEN (width, pattern, color)]
```

A text object consists of a text string, up to 255 characters long. To make the text string wrap onto multiple lines, insert the characters \n within the textstring argument (e.g. "First line \nSecond line \nThird line"). The $x 1, y 1, x 2$, and $y 2$ arguments specify the location of the text on the map. Spacing can be 1.0 (single spacing), 1.5, or 2.0 (double spacing). Use the Font clause (described later in this chapter) to control the typeface, etc.

```
TEXT "textstring"
    x1 y1 x2 y2
        [ FONT...]
[ Spacing {1.0 | 1.5 | 2.0}]
[ Justify {Left | Center | Right}]
[ Angle text_angle]
[ Label Line {simple | arrow} x y ]
```

A rectangle requires the coordinates of the diagonally opposite corners. As an option, specify pen and brush types.

```
RECT x1 y1 x2 y2
    [ PEN (width, pattern, color)]
    [ BRUSH (pattern, forecolor, backcolor)]
```

A rounded rectangle requires the coordinates of the diagonally opposite corners and the degree of rounding (a). As an option, specify pen and brush types. Degree of rounding is expressed in coordinate units.

```
ROUNDRECT x1 y1 x2 y2
    a
    [ PEN (width, pattern, color)]
    [ BRUSH (pattern, forecolor, backcolor)]
```

An ellipse object requires the coordinates of the diagonally opposite corners of its bounding rectangle. As an option, specify pen and brush types.

ELLIPSE $\mathbf{x 1} \mathbf{y}^{1} \mathbf{x} \mathbf{2} \mathbf{y}^{2}$
[ PEN (width, pattern, color)]
[ BRUSH (pattern, forecolor, backcolor)]

## Pen Styles

The Pen clause specifies the width, pattern, and color of a linear object, such as a line, polyline arc, or the border of a region. The Pen clause has the following syntax:

PEN (width, pattern, color)
Width is a number from 1 to 7. 1-7 is the width in screen pixels. 11-2047 are values that will be converted to points:
penwidth $=($ number of points * 10) +10
0 is only valid when the pen pattern is 1 for invisible lines.
Color is an integer, representing a 24 -bit RGB color value.
Pattern is an integer from 1 to 118; pattern number 1 is invisible. The pattern number corresponds to a pen number in the pen file. The pen file can be modified using a pen editor.
Valid pen numbers are from 1 to maximum number of pens in the pen file, which should not exceed 127. If a pen style is interleaved, 128 will be added to the pen number. Interleaved styles are in the range 129-255. Because the pen file can be modified, and interleaved can be specified, the pen pattern can be a number between 1-255.

The following table lists the available line styles by default:


## Brush Styles

Brush specifies the pattern, foreground color, and background color of a filled object, such as a circle or region. The Brush clause has the following syntax:

```
Brush (pattern, forecolor [, backcolor ])
```

The forecolor and backcolor arguments are both integers, representing 24-bit RGB color values. Pattern is a number from 1 to 71 . Note: Pattern number 1 is "no fill," and pattern number 2 is a solid fill. Pattern numbers $9-11$ are reserved. The following table illustrates the available styles:


Tip: To specify a transparent fill style, use pattern number three or larger, and omit the backcolor argument. For example: Brush( 5, 255 )

## Symbol Styles

The Symbol clause specifies the appearance of a Point object. There are three different forms of the Symbol clause, described below.

## Symbol Clause-MapInfo 3.0 Syntax

The Symbol clause specifies the appearance of a Point object. There are three different forms of the Symbol clause. To specify a symbol style using "Old MapInfo Symbols" (the symbols that were used in earlier versions of MapInfo), use the following syntax:

SYMBOL (shape, color, size)
The shape argument is an integer value, 31 or larger; 31 represents a blank symbol (i.e. the object will not be visible). The standard set of symbols includes symbols 32 through 67, inclusive, but the user can customize the symbol set by using the Symbol application.
The color argument is an integer representing a 24-bit RGB color value.
The size argument is an integer from 1 to 48 , representing a point size.
The following table lists the default symbols provided with MapInfo:

| 31 | 41 | 方 | 51 | * | 61 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 42 | $\triangle$ | 52 | + | 62 |
| 33 | 43 | $\nabla$ | 53 | $\stackrel{\square}{\square}$ | 63 |
| 34 | 44 | $\square$ | 54 | r | 64 |
| 35 | 45 | $\triangle$ | 55 | H | 65 |
| 36 | 46 | $\bigcirc$ | 56 |  | 66 |
| 37 | 47 | 2 | 57 | A | 67 |
| 38 | 48 | - | 58 | $\pm$ |  |
| 39 | 49 | + | 59 | $\bigcirc$ |  |
| 40 | 50 | X | 60 | $\square$ |  |

## Symbol Clause-TrueType Font Syntax

To specify a symbol style based on a character from a TrueType font, use the following syntax:

```
SYMBOL (shape, color, size, fontname, fontstyle, rotation)
```

The fontname argument is a text string that identifies the name of a font (e.g. "Wingdings").
The fontstyle argument is an integer that controls settings such as Bold. The following table lists the values you can use as fontstyle.

| fontstyle value | Effect on Symbol style |
| :--- | :--- |
| 0 | Plain text |
| 1 | Bold text |
| 16 | Black border around symbol |
| 32 | Drop shadow |
| 256 | White border around symbol |

To specify two or more style attributes, add the values from the left column. For example, to specify Bold and Drop Shadow, use 33.
The rotation argument is a floating-point number, representing a rotation angle, in degrees.

## Symbol clause - Custom Bitmap File Syntax

To specify a symbol style based on a character from a TrueType font, use the following syntax:

```
SYMBOL (filename, color, size, customstyle)
```

The filename argument is a text string that identifies a bitmap file (e.g. "Arrow.BMP") in the CustSymb directory.

The customstyle argument is an integer that controls whether color and background attributes are used. The following table lists the values you can use as customstyle:

| customstyle value | Effect on Symbol style |
| :--- | :--- |
| 0 | Both the Show Background setting and the Apply <br> Color setting are off; symbol appears in default state. <br> White pixels in the bitmap appear transparent, allow- <br> ing whatever is behind the symbol to show through. |
| 1 | The Show Background settings is on; white pixels in <br> the image are opaque. |
| 2 | The Apply Color setting is on; non-white colors in the <br> image are replaced with the Symbol's color value. |
| Both Show Background and Apply Color settings are <br> on. |  |

## Font Styles

The Font clause specifies the appearance (typeface, color, etc.) of text objects. The Font clause has the following syntax:

```
FONT ("fontname", style, size, forecolor [, backcolor] )
```

Fontname in double quotation marks is the typeface to be displayed. Style is the text attribute of the typeface as shown in the following table. Size must be 0 in a MIF file, because each text object on a Map is attached to the map itself (thus the text size changes as you zoom in or out). Forecolor is an integer representing a 24 -bit RGB color. The background color is optional; if you include it, MapInfo fills the area behind the text with the color you specify.

| style value | Effect on Font Appearance |
| :--- | :--- |
| 0 | Plain |
| 1 | Bold |
| 2 | Italic |
| 4 | Underline |
| 16 | Outline (only supported on the Macintosh) |
| 32 | Shadow |
| 256 | Halo |
| 512 | All Caps |
| 1024 | Expanded |

To specify two or more style attributes, add the values from the left column. For example, to specify Bold and All Caps, use 513.

## Colors

Colors are often defined in relative concentrations of red, green, and blue. Each color is a number from 0 to 255 , inclusive; the RGB value of a color is calculated by the following formula:
(red * 65536) + (green * 256) + blue
These are some often used colors and their values:
Red: 16711680
Green: 65280
Blue: 255
Cyan: 65535
Magenta: 16711935
Yellow: 16776960
Black: 0

## MID File

The MID file contains data, one record of data per row, delimited by the character specified in the delimiter statement. The default delimiter is Tab. Each row in the MID file is associated with a corresponding object in the MIF file; first row with first object, second row with second object.
If delimiter character is included as part of the data in a field, enclose the field in quotation marks.

The MID file is an optional file. When there is no MID file, all fields are blank.

## Chapter 2: Creating Your Own Coordinate System

MapInfo provides over 300 predefined coordinate systems. However, you may want to use another coordinate system. You create another coordinate system by changing the parameters of one of the predefined systems or by defining new coordinate systems from scratch. This section tells you what those parameters are and how to make the changes. In this chapter, you will find information on:

- Projections and Coordinate Systems
- Elements of a Coordinate System
- Editing the MAPINFOW.PRJ File
- Affine Transformations
- Frequently Asked Questions on Projections
- More Information on Projections


## Projections and Coordinate Systems

While the terms "projection" and "coordinate system" are often used interchangeably, they do not have the same meaning. A projection is an equation or set of equations containing a set of parameters-the exact number and nature of the parameters depends on the projection. When each of those parameters has been assigned a specific value, the result is a coordinate system. The items listed in the Choose Projection dialog are coordinate systems.

Projection is the method of reducing the distortion of curved earth features on a flat paper map or computer screen. A coordinate system is a collection of parameters that describe coordinates. One of the parameters is projection.

## Elements of a Coordinate System

This section briefly defines the elements of a coordinate system. The first element in defining a coordinate system is the set of equations for the system's projection. The elements after that are the parameters for the projection. None of the coordinate systems require all of these parameters.

## Projections and Their Parameters

The following table indicates the parameters applicable to each projection. They are listed in the order they appear in the MAPINFOW.PRJ file.
End

* MapInfo supports the Azimuthal Equidistant and Lambert Azimuth Equal-Area projections in the polar aspect only. The Origin Latitude for these projections must be either 90 or -90 .


## Projection

The projection is the equation or equations used by a coordinate system. The following list names the projections MapInfo uses and gives the number used to identify the projection in the MAPINFOW.PRJ file:

| Number | Projection |
| :--- | :--- |
| 9 | Albers Equal-Area Conic |
| 5 | Azimuthal Equidistant (polar aspect only) |
| 2 | Cylindrical Equal-Area |
| 14 | Eckert IV |
| 15 | Eckert VI |
| 6 | Equidistant Conic, also known as Simple Conic |
| 17 | Gall |
| 7 | Hotine Oblique Mercator |
| 4 | Lambert Azimuthal Equal-Area (polar aspect only) |
| 3 | Lambert Conformal Conic |
| 19 | Lambert Conformal Conic (modified for Belgium 1972) |
| 1 | Longitude/Latitude |
| 10 | Mercator |
| 11 | Miller Cylindrical |
| 18 | New Zealand Map Grid |
| 13 | Mollweide |
| 27 | Polyconic |
| 26 | Regional Mercator |
| 12 | Robinson |
| 16 | Sinusoidal |
| 20 | Stereographic |
| 25 | Swiss Oblique Mercator |
| 8 | Transverse Mercator, also known as Gauss-Kruger |


| Number | Projection |
| :--- | :--- |
| 21 | Transverse Mercator, (modified for Danish System 34 <br> Jylland-Fyn) |
| 22 | Transverse Mercator, (modified for Sjaelland) |
| 23 | Transverse Mercator,(modified for Danish System 45 <br> Bornholm) |
| 24 | Transverse Mercator, (modified for Finnish KKJ) |

## Datum

The datum is established by tying a reference ellipsoid to a particular point on the earth. The following tables lists:

- The datums
- The maps where they are typically used
- Their reference ellipsoid
- The number used to identify the datum in the MAPINFOW.PRJ file.
- See Appendix G of the MapInfo Professional User's Guide for further information on special datum 9999.

| Number | Datum | Area | Ellipsoid |
| :--- | :--- | :--- | :--- |
| 1 | Adindan | Ethiopia, Mali, Senegal, Sudan | Clarke 1880 |
| 2 | Afgooye | Somalia | Krassovsky |
| 3 | Ain el Abd 1970 | Bahrain Island | International |
| 4 | Anna 1 Astro 1965 | Cocos Islands | Australian <br> National |
| 5 | Arc 1950 | Botswana, Lesotho, Malawi, <br> Swaziland, Zaire, Zambia, Zimbabwe | Clarke 1880 |
| 6 | Arc 1960 | Kenya, Tanzania | Clarke 1880 |
| 7 | Ascension Island 1958 | Ascension Island | International |
| 8 | Astro Beacon "E" | Iwo Jima Island | International |
| 9 | Astro B4 Sorol Atoll | Tern Island | International |


| Number | Datum | Area | Ellipsoid |
| :---: | :---: | :---: | :---: |
| 10 | Astro DOS 71/4 | St. Helena Island | International |
| 11 | Astronomic Station 1952 | Marcus Island | International |
| 12 | Australian Geodetic 1966 (AGD 66) | Australia and Tasmania Island | Australian <br> National |
| 13 | Australian Geodetic 1984 (AGD 84) | Australia and Tasmania Island | Australian <br> National |
| 110 | Belgium | Belgium | International |
| 14 | Bellevue (IGN) | Efate and Erromango Islands | International |
| 15 | Bermuda 1957 | Bermuda Islands | Clarke 1866 |
| 16 | Bogota Observatory | Colombia | International |
| 17 | Campo Inchauspe | Argentina | International |
| 18 | Canton Astro 1966 | Phoenix Islands | International |
| 19 | Cape | South Africa | Clarke 1880 |
| 20 | Cape Canaveral | Florida and Bahama Islands | Clarke 1866 |
| 21 | Carthage | Tunisia | Clarke 1880 |
| 22 | Chatham 1971 | Chatham Island (New Zealand) | International |
| 23 | Chua Astro | Paraguay | International |
| 24 | Corrego Alegre | Brazil | International |
| 9999 | Custom (see Appendix G) |  |  |
| 1000 | Deutsches <br> Hauptdreicksnetz <br> (DHDN) | Germany | Bessel |
| 25 | Djakarta (Batavia) | Sumatra Island (Indonesia) | Bessel 1841 |
| 26 | DOS 1968 | Gizo Island (New Georgia Islands) | International |
| 27 | Easter Island 1967 | Easter Island | International |


| Number | Datum | Area | Ellipsoid |
| :---: | :---: | :---: | :---: |
| 28 | European 1950 (ED 50) | Austria, Belgium, Denmark, Finland, France, Germany, Gibraltar, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland | International |
| 29 | European 1979 (ED 79) | Austria, Finland, Netherlands, Norway, Spain, Sweden, Switzerland | International |
| 108 | European 1987 (ED 87) | Europe | International |
| 30 | Gandajika Base | Republic of Maldives | International |
| 31 | Geodetic Datum 1949 | New Zealand | International |
| 32 | Geodetic Reference System 1967 (GRS 67) | Worldwide | GRS 67 |
| 33 | Geodetic Reference <br> System 1980 (GRS 80) | Worldwide | GRS 80 |
| 34 | Guam 1963 | Guam Island | Clarke 1866 |
| 35 | GUX 1 Astro | Guadalcanal Island | International |
| 36 | Hito XVIII 1963 | South Chile (near $53^{\circ} \mathrm{S}$ ) | International |
| 37 | Hjorsey 1955 | Iceland | International |
| 38 | Hong Kong 1963 | Hong Kong | International |
| 39 | Hu-Tzu-Shan | Taiwan | International |
| 40 | Indian | Thailand and Vietnam | Everest |
| 41 | Indian | Bangladesh, India, Nepal | Everest |
| 42 | Ireland 1965 | Ireland | Modified Airy |
| 43 | ISTS 073 Astro 1969 | Diego Garcia | International |
| 44 | Johnston Island 1961 | Johnston Island | International |
| 45 | Kandawala | Sri Lanka | Everest |
| 46 | Kerguelen Island | Kerguelen Island | International |
| 47 | Kertau 1948 | West Malaysia and Singapore | Modified Everest |
| 48 | L.C. 5 Astro | Cayman Brac Island | Clarke 1866 |


| Number | Datum | Area | Ellipsoid |
| :--- | :--- | :--- | :--- |
| 49 | Liberia 1964 | Liberia | Clarke 1880 |
| 113 | Lisboa (DLx) | Portugal | International |
| 50 | Luzon | Philippines (excluding Mindanao <br> Island) | Clarke 1866 |
| 51 | Luzon | Mindanao Island | Clarke 1866 |
| 52 | Mahe 1971 | Mahe Island | Clarke 1880 |
| 53 | Marco Astro | Salvage Islands | International |
| 54 | Massawa | Eritrea (Ethiopia) | Bessel 1841 |
| 114 | Melrica 1973 (D73) | Portugal | International |
| 55 | Merchich | Morocco | Clarke 1880 |
| 56 | Midway Astro 1961 | Midway Island | International |
| 57 | Minna | Nigeria | Clarke 1880 |
| 58 | Nahrwan | Masirah Island (Oman) | Clarke 1880 |
| 59 | Nahrwan | United Arab Emirates | Clarke 1880 |
| 60 | Nahrwan | Saudi Arabia | Clarke 1880 |
| 61 | Naparima, BWI | Trinidad and Tobago | International |
| 109 | Netherlands | Netherlands | Bessel |
| 62 | North American 1927 <br> (NAD 27) | Continental US | Clarke 1866 |
| 63 | North American 1927 <br> (NAD 27) | Alaska | Clarke 1866 |
| 65 | North American 1927 <br> (NAD 27) | Bahamas (excluding San Salvador <br> Island) | Clarke 1866 |
| (NAD 27) |  |  |  |

Chapter 2: Creating Your Own Coordinate System

| Number | Datum | Area | Ellipsoid |
| :--- | :--- | :--- | :--- |
| 68 | North American 1927 <br> (NAD 27) | Caribbean (Turks and Caicos Islands) | Clarke 1866 |
| 69 | North American 1927 <br> (NAD 27) | Central America (Belize, Costa Rica, <br> El Salvador, Guatemala, Honduras, <br> Nicaragua) | Clarke 1866 |
| 70 | North American 1927 <br> (NAD 27) | Cuba | Clarke 1866 |
| 71 | North American 1927 <br> (NAD 27) | Greenland (Hayes Peninsula) | Clarke 1866 |
| 72 | North American 1927 <br> (NAD 27) | Mexico | Clarke 1866 |
| 73 | North American 1927 <br> (NAD 27) | Michigan (used only for State Plane <br> Coordinate System 1927) | Modified Clarke <br> 1866 |
| 74 | North American 1983 <br> (NAD 83) | Alaska, Canada, Central America, <br> Continental US, Mexico | GRS 80 |
| 107 | Nouvelle Triangulation <br> Francaise (NTF) | France | Modified Clarke <br> 1880 |
| 1002 | Nouvelle Triangulation <br> Francaise (NTF) <br> Greenwich Prime <br> Meridian | France | More |


| Number | Datum | Area | Ellipsoid |
| :---: | :---: | :---: | :---: |
| 36 | Provisional South Chilean 1963 | South Chile (near $53^{\circ} \mathrm{S}$ ) | International |
| 82 | Provisional South American 1956 | Bolivia, Chile, Colombia, Ecuador, Guyana, Peru, Venezuela | International |
| 83 | Puerto Rico | Puerto Rico and Virgin Islands | Clarke 1866 |
| 1001 | Pulkovo 1942 | Germany | Krassovsky |
| 84 | Qatar National | Qatar | International |
| 85 | Qornoq | South Greenland | International |
| 1000 | Rauenberg | Germany | Bessel |
| 86 | Reunion | Mascarene Island | International |
| 112 | Rikets Triangulering 1990 (RT 90) | Sweden | Bessel |
| 87 | Rome 1940 | Sardinia Island | International |
| 88 | Santo (DOS) | Espirito Santo Island | International |
| 89 | São Braz | São Miguel, Santa Maria Islands (Azores) | International |
| 90 | Sapper Hill 1943 | East Falkland Island | International |
| 91 | Schwarzeck | Namibia | Modified Bessel 1841 |
| 92 | South American 1969 | Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Venezuela, Trinidad, and Tobago | South American 1969 |
| 93 | South Asia | Singapore | Modified Fischer 1960 |
| 94 | Southeast Base | Porto Santo and Madeira Islands | International |
| 95 | Southwest Base | Faial, Graciosa, Pico, Sao Jorge, Terceira Islands (Azores) | International |
| 1003 | Switzerland (CH 1903) | Switzerland | Bessel |


| Number | Datum | Area | Ellipsoid |
| :--- | :--- | :--- | :--- |
| 96 | Timbalai 1948 | Brunei and East Malaysia (Sarawak <br> and Sabah) | Everest |
| 97 | Tokyo | Japan, Korea, Okinawa | Bessel 1841 |
| 98 | User-defined <br> (see Appendix G) | Tristan da Cunha | International |
| 9999 | Viti Levu 1916 | Wake-Eniwetok 1960 | Marshall Islands |
| 99 | World Geodetic System <br> 1960 (WGS 60) | Worldwide | Clarke 1880 |
| 100 | World Geodetic System <br> 1966 (WGS 66) | Worldwide | WGS 60 |
| 101 | World Geodetic System <br> 1972 (WGS 72) | Worldwide | WGS 66 |
| 102 | World Geodetic System <br> 1984 (WGS 84) | Worldwide | WGS 72 |
| 103 | Yacare | Uruguay | WGS 84 |
| 104 | Surinam | International |  |
| 105 | Zanderij | Wslands) |  |
| 106 | Wational |  |  |

## Units

The following table lists the available coordinate units and the number used to identify the unit in the MAPINFOW.PRJ file:

| Number | Units |
| :--- | :--- |
| 6 | Centimeters |
| 31 | Chains |
| 3 | Feet (also called International Feet) ${ }^{*}$ |
| 2 | Inches |
| 1 | Kilometers |


| Number | Units |
| :--- | :--- |
| 30 | Links |
| 7 | Meters |
| 0 | Miles |
| 5 | Naillimeters |
| 9 | US Survey Feet (used for 1927 State <br> Plane) ${ }^{* * *}$ |
| 32 | Yards |
| 8 |  |
| 4 |  |

* One International Foot equals exactly 30.48 cm .
** One Nautical Mile equals exactly 1852 meters.
*** One US Survey Foot equals exactly $12 / 39.37$ meters, or approximately 30.48006 cm .


## Coordinate System Origin

The origin is the point specified in longitude and latitude from which all coordinates are referenced. It is chosen to optimize the accuracy of a particular coordinate system. As we move north from the origin, Y increases. X increases as we move east. These coordinate values are generally called northings and eastings.

For the Transverse Mercator projection the origin's longitude defines the central meridian. In constructing the Transverse Mercator projection a cylinder is positioned tangent to the earth. The central meridian is the line of tangency. The scale of the projected map is true along the central meridian.

In creating a Hotine Oblique Mercator projection it is necessary to specify a great circle that is not the equator nor a meridian. MapInfo does this by specifying one point on the ellipsoid and an azimuth from that point. That point is the origin of the coordinate system.

## Standard Parallels (Conic Projections)

In conic projections a cone is passed through the earth intersecting it along two parallels of latitude. These are the standard parallels. One is to the north and one is to the south of the projection zone. To use a single standard parallel specify that latitude twice. Both are expressed in degrees of latitude.

## Oblique Azimuth (Hotine Oblique Mercator)

When specifying a great circle (Hotine Oblique Mercator) using a point and an azimuth (arc), the azimuth is called the Oblique Azimuth and is expressed in degrees.

## Scale Factor (Transverse Mercator)

A scale factor is applied to cylindrical coordinates to average scale error over the central area of the map while reducing the error along the east and west boundaries. The scale factor has the effect of recessing the cylinder into the earth so that it has two lines of intersection. Scale is true along these lines of intersection.

You may see the scale factor expressed as a ratio, such as 1:25000. In this case it is generally called the scale reduction. The relationship between scale factor and scale reduction is:
scale factor $=1$-scale reduction
In this case the scale factor would be $1-(1 / 25000)$ or 0.99996 .

## False Northings and False Eastings

Calculating coordinates is easier if negative numbers aren't involved. To eliminate this problem in calculating State Plane and Universal Transverse Mercator coordinates, it is common to add measurement offsets to the northings and eastings. These offsets are called False Northings and False Eastings. They are expressed in coordinate units, not degrees. (The coordinate units are specified by the Units parameter.)

## Range (Azimuthal Projections)

The range specifies, in degrees, how much of the earth you are seeing. The range can be between 1 and 180 . When you specify 90 , you see a hemisphere. When you specify 180 you see the whole earth, though much of it is very distorted.

## Polyconic Projection

The following description is copied from "Map Projections -- A Working Manual", USGS Professional Paper 1395, by John P. Snyder.
The Polyconic projection, usually called the American Polyconic in Europe, achieved its name because the curvature of the circular arc for each parallel on the map is the same as it would be following the unrolling of a cone which had been wrapped around the globe tangent to the particular parallel of latitude, with the parallel traced onto the cone. Thus, there are many ("poly-") cones involved, rather than the single cone of each regular conic projection.

The Polyconic projection is neither equal-area nor conformal. Along the central meridian, however, it is both distortion free and true to scale. Each parallel is true to scale, but the meridians are lengthened by various amounts to cross each parallel at the correct position along the parallel, so that no parallel is standard in the sense of having conformality (or correct angles), except at the central meridian. Near the central meridian, distortion is extremely small.

## Editing the MAPINFOW.PRJ File

The MAPINFOW.PRJ file lists the parameters for each coordinate system on a separate line, as in the following examples:

```
"Mollweide (Equal Area)", 13, 62, 7, 0
"Albers Equal-Area Conic (Alaska)", 9, 63, 7, -154, 50, 55, 65, 0, 0
"Alabama,Western Zone (1983)", 8, 74, 7,-87.5, 30.0, 0.9999333333, 600000, 0
"UTM Zone 9 (NAD 27 for Canada)", 8, 66, 7, -129, 0, 0.9996, 500000, 0
```

The first element in each list is the name of the coordinate system in quotes. The second element in each list is the number that identifies the projection. The remaining elements in the list are the parameter values for that particular coordinate system. The elements follow the order as outlined in the table "Elements of a Coordinate System" at the beginning of this chapter. Each element is separated by commas.

To create your own coordinate system you will need to add a new entry to the MAPINFOW.PRJ file that lists the appropriate elements. The process is described below.

## Creating a New Coordinate System

To create a new coordinate system for use in MapInfo:

1. Open MAPINFOW.PRJ in a text editor or word processor.
2. On a separate line, and following the convention of the other entries list the name for the new coordinate system in quotes, followed by a comma.
3. Add the appropriate numbers for each parameter that pertains to your coordinate system. The order of parameters is important. See the table "Elements of a Coordinate System" at the beginning of this chapter for the parameters for your coordinate system. Separate each parameter with a comma.
4. If necessary, move your new coordinate system to the appropriate place in the list of coordinate systems. For instance, if the new coordinate system applies to a hemisphere, put it in the "Projections of a Hemisphere" group.
5. Save your edited MAPINFOW.PRJ file.

## Example of a New Coordinate System

To illustrate this process, consider the following parameters for a coordinate system that you want to add to the MAPINFOW.PRJ file:

| Projection | Equidistant Conic |
| :--- | :--- |
| Datum | NAD 83 |
| Units | meters |
| Origin | $30^{\circ} \mathrm{N}, 90^{\circ} 30^{\prime} \mathrm{W}$ |
| Standard Parallels | $10^{\circ} 20^{\prime} \mathrm{N}$ and $50^{\circ} \mathrm{N}$ |
| False Easting | $10,000,000 \mathrm{~m}$ |
| False Northing | $500,000 \mathrm{~m}$ |

1. Open MAPINFOW.PRJ in a text editor or word processor.
2. On an empty line, put the name of your new coordinate system in quotes, followed by a comma.
3. Enter the following information to represent your coordinate system:

6, 74, 7, $-90.5,30,10.33333,50,10000000,500000$
4. Move the entry to its appropriate place among like coordinate systems, if necessary.
5. Save your edited MAPINFOW.PRJ file.

You can now use your custom coordinate system just as you would use any of the coordinate systems that come with MapInfo.
Things to keep in mind when editing the MAPINFOW.PRJ file:

- When specifying projection, datum and units, use the number that represents the parameter. These numbers are listed in the table for each parameter earlier in this chapter. In our example, 6 represents Equidistant Conic projection; 74 represents NAD 83 datum, and 7 represents meters.
- You must record the coordinates in decimal degrees. See Appendix $G$ of the Mapinfo Professional User's Guide for instructions on converting degrees, minutes, seconds, into decimal degrees.
- Remember to include a negative sign for west longitudes and south latitudes.
- You must list the origin longitude first in the MAPINFOW.PRJ file even though it is commonly seen elsewhere following the latitude.
- Carry out decimals to at least five (5) places for greater accuracy.
- Do not use commas to represent thousands or millions in large numbers. Only use commas to separate parameters from one another.

There are other ways you can edit this file. When you want a shorter list remove coordinate systems from the file. You can also change the names, change group headings and reorder the file to suit your needs.
$\checkmark$ Note: Group headings are distinguished by the hyphen at the beginning of the name.
Names of coordinate systems cannot begin with a hyphen or a space.

## Affine Transformations

MapInfo provides the ability to define rotated or skewed coordinate systems by allowing an optional affine transformation in any coordinate system definition. You can also define a coordinate system with bounds and an affine transformation. In that case, add 3000 to the projection number, enter the Affine parameters ( $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ ) and then list the bounds ( $x 1, y 1, x 2, y 2$ ). The general form is:

```
Name, Projection Number + 3000, projection components (from
Appendix F of the MapInfo Professional User's Guide), Affine
units, A, B, C, D, E, F, x1, y1, x2, y2
```

An example of a Mapinfow.prj line with a rotated Affine transformation might look like this with the affine parameters in Bold and bounds in Italics:
"Equal Area for GA (NAD 27)", 3009, 62, 7, -96, 23, 29.5, 45.5, 0, 0, 07, -0.00000000001, 1, -116.071, $\mathbf{- 1}, \mathbf{- 0 . 0 0 0 0 0 0 0 0 0 0 1}, \mathbf{- 5 0 . 5 3 1 2 0}, 0-6972009.20702,-16901023.2253,26829936.181,16900922.1627$

## Description

An affine transformation has the following form:

$$
\begin{aligned}
& x^{\prime}=A x+B y+C \\
& y^{\prime}=D x+E y+F
\end{aligned}
$$

In these equations, the base coordinates $(x, y)$ are transformed to produce the derived coordinates $\left(x^{\prime}, y^{\prime}\right)$. The six constants A through F determine the effect of the transformation and we use the post multiply method for homogenous 2D coordinate systems. This can be considered a matrix operation as follows:

| A B C | X | X' |  |
| :---: | :---: | :---: | :---: |
| D E F | * Y | Y' |  |
| $0 \quad 0 \quad 1$ | 1 | 1 | Where ( $\mathrm{X}, \mathrm{Y}$ ) and ( $\left.\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$ are as defined above |

To do various types of affine transformations the values of $A, B, B, D, E$, and $F$ need to be determined. It is fairly easy to define the basic Transformations, Translations, Rotations, Scaling in $X$, Scaling in $Y$, Shearing in $X$ and Shearing in $Y$ which can be done using an Affine Transformation.

Transformation: C and F are the values you want $(0,0)$ to go to, $\mathrm{A}=\mathrm{E}=1$ and $\mathrm{B}=\mathrm{D}=0$. So to move the coordinate system so the origin is at $(5,2)$ the values would be: $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=5, \mathrm{D}=0$, $E=1$, and $F=2$.

Rotation about the origin: $\mathrm{A}=\mathrm{E}=\cos$ (angle to rotate), $-\mathrm{B}=\mathrm{D}=\sin$ (angle to rotate), $\mathrm{C}=\mathrm{F}=0$. So to rotate 60 degree counterclockwise around the origin, $\mathrm{A}=.5, \mathrm{~B}=-.866, \mathrm{C}=0, \mathrm{D}=.866, \mathrm{E}=.5$, and $\mathrm{F}=0$.

To Scale in the $X$ direction: $A$ is the scale you want to use. $\mathrm{E}=1$ and the rest are 0 . So to scale to 3 times the size in the $X$ direction the values would be $A=3, B=0, C=0, D=0, E=1, F=0$.

To Scale in the $Y$ direction: $E$ is the scale you want to use. $A=1$ and the rest are 0 . So to scale to 5 times the size in the Y direction the values would be $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=0, \mathrm{E}=5, \mathrm{~F}=0$.

To Scale Overall just make sure that $A$ and $E$ are equal.
To Shear in the X direction: $\mathrm{A}=\mathrm{E}=1, \mathrm{~B}$ is the shear factor and the rest are 0 . So to Shear by 5 units in the $X$ direction then $A=1, B=5, C=0, D=0, E=1, F=0$.

To Shear in the $Y$ direction: $A=E=1, D$ is the Shear factor and the rest are 0 . So to Shear by 4 units in the Y direction then $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=4, \mathrm{E}=1, \mathrm{~F}=0$.

Now to get a general affine transformation, do a pre-matrix multiplication of the basic pieces of the transformation. Make sure that you put the first operation on the right. So to Translate to $(5,2)$ Rotate 60 degrees and then Shear 5 units in Y and then Translate to $(3,2)$. The values would be $\mathrm{A}=.5, \mathrm{~B}=-.866, \mathrm{C}=6.232, \mathrm{D}=3.366, \mathrm{E}=-2.23, \mathrm{~F}=22.758$.

## Frequently Asked Questions on Projections

Question: "What do the \p\#\#\#\# codes mean in the Mapinfow.prj file?"
e.g.: "--- Australian Map Grid (AGD 66) ---"
"AMG Zone 47 (AGD 66)", 8, 12, 7, 99, 0, 0.9996, 500000, 10000000
"AMG Zone 48 (AGD 66) \p20248", 8, 12, 7, 105, 0, 0.9996, 500000, 10000000
Answer: MapInfo uses the $\backslash \mathrm{p} \# \# \# \#$ or Projected Coordinate System (PCS) codes shown in the above example when registering GeoTIFF images with the GEOREG.MBX utility. GeoTIFF files often identify their coordinate system with a single code number instead of listing the coordinate system parameters, so GEOREG.MBX scans the MAPINFOW.PRJ file to find a matching supported code. MapInfo supports a subset of PCS codes, depending on the projection they use, in values between 20000 and 32760). Codes cannot be used more than once in the mapinfow.prj file. For more information about GeoTIFF files, see http://www.remotesensing.org/geotiff/geotiff.html.

## Chapter 2: Creating Your Own Coordinate System

Question: "How do I convert a coordinate system with units in meters to use feet?"
Answer: You will need to edit the Mapinfow.prj file to modify the same projection in a different measurement system and adjust the False Eastings and Northings used for the difference.

For example below, the first line is the original projection expressed in meters. The second line is a copied modification of the first, where the units were changed from " 7 " (meters) to " 8 " (feet) indicating this coordinate system is now using feet, and the False Easting (2000000) and Northing (500000) components were divided by .3048 to convert them from meters to feet.

## Example:

"California, Zone I (1983) \p26941", 3, 74, 7, -122, 39.3333333333, 40, 41.6666666667, 2000000, 500000
"California, Zone I FT (1983) \p26941", 3, 74, 8, -122, 39.3333333333, 40, 41.6666666667, 6561679.7, 164041.99

Question: "I chose Longitude/Latitude (NAD 83) as my projection, however, whenever I look at the Choose Projection dialog, it keeps saying Longitude/Latitude (GRS 80), why won't my projection change?"

Answer: The GRS 80 datum is exactly identical to NAD 83 datum. MapInfo uses the numeric parameters, not the name, to decide which coordinate system to highlight in the Choose Projection dialog. Since GRS 80 has the same numeric parameters as NAD 83, and GRS 80 comes earlier in the list, MapInfo chooses GRS 80 instead of NAD 83.

## More Information on Projections

The first three publications listed below are relatively short pamphlets. The last two are substantial books. We've also given addresses and phone numbers for the American Congress of Surveying and Mapping (the pamphlets) and the U.S. Geological Survey (the books).

American Cartographic Association. Choosing a World Map—Attributes, Distortions, Classes, Aspects. Falls Church, VA: American Congress on Surveying and Mapping. Special Publication No. 2. 1988.

American Cartographic Association. Matching the Map Projection the Need. Falls Church, VA: American Congress on Surveying and Mapping. Special Publication No. 3. 1991.

American Cartographic Association. Which Map is Best? Projections for World Maps. Falls Church, VA: American Congress on Surveying and Mapping. Special Publication No. 1. 1986.

John P. Snyder. Map Projections—A Working Manual. Washington: U.S. Geological Survey Professional Paper 1395. 1987
John P. Snyder and Philip M. Voxland. An Album of Map Projections. Washington: U.S. Geological Survey Professional Paper 1453. 1989.

## Addresses and phone numbers:

American Congress on Surveying and Mapping
5410 Grosvenor Lane, Suite 100
Bethesda, MD 20814-2212
301-493-0200
Earth Science Information Center
U.S. Geological Survey

507 National Center
Reston, VA 22092
703-860-6045 or 1-800-USA-MAPS
Peter H. Dana of the Department of Geography, University of Texas at Austin has also put up an incredible website for explanations of Map projections, Geodetic Datums, and Coordinate systems. It is a valuable as many of these explanations were also presented using MapInfo Professional. The materials may be used for study, research, and education, but please credit the author:

Peter H. Dana, The Geographer's Craft Project, Department of Geography, The University of Texas at Austin.

For Geodetic Datum information and explanations, go to http://www.utexas.edu/depts/grg/gcraft/notes/datum/datum.html

For Information on Coordinate systems and other principles, go to http://www.utexas.edu/depts/grg/gcraft/notes/coordsys/coordsys.html

For Information on Map Projections go to
http://www.utexas.edu/depts/grg/gcraft/notes/mapproj/mapproj.html

